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Abstract

We developed the nominal neural test (NNT) model, which is a model of neural test
theory (NTT) for analyzing nominal polytomous data. The NNT model is useful for evalu-
ating the statistical characteristics of correct and incorrect choices of multiple-choice items.
It becomes identical to the dichotomous NTT model when all items are binary. We report
three analysis examples using the maximum likelihood (ML) method when the number of
latent ranks @) equals 10 and 5, and the Bayesian method when ) = 10.
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1 Introduction

Neural test theory (NTT; Shojima, 2007a) is a latent rank theory (LRT; Shojima, 2007f)
for analyzing test data, and its mechanism is derived from the self-organizing map (SOM;
Kohonen, 1995). The assumed latent scale in the NTT is rank-ordered, while the scale
supposed in item response theory (IRT; e.g., Lord, 1980), which is the most prevailing test
theory at present is continuous.

It is valid to install a rank-ordered scale in test theory because a test cannot distinguish
two examinees who have nearly equal abilities. Although the abilities of examinees contin-
uously vary, tests don’t have high enough resolution to capture them. The most that a test
can do is to grade examinees into several ranks.

Shojima (2007b) developed a graded neural test (GNT) model, which is a polytomous
neural test model for analyzing ordered polytomous data, by extending the dichotomous
neural test (DNT) model for binary data of true/false items. The GNT model reduces to
the DNT model when all items are binary, and it is effective for analyzing testlet items
composed of a few or several small questions and Likert-type (i.e., five-point agree-disagree
scale) items of psychological questionnaires. However, polytomous data is not always ordered
and sometimes nominal.

In fact, almost all true/false items are originally multiple-choice single-answer items,
which are usually composed of one correct and a few wrong choices. That is, the data are
originally nominal, and they are practically coded 1 (true) and 0 (false). Therefore, the
DNT model can analyze multiple-choice items, although it cannot be used to obtain the
information about incorrect choices.

However, it is important to analyze nominal data as they are. Such an analysis is neces-
sary to clarify the variety of statistical characteristics of each nominal choice. For example,
the analysis might reveal that an incorrect choice is inclined to be selected not only by the
examinees with low ability but also by those with mid-level or even high ability. Or, the
analysis can tell us which of two incorrect choices A and B is closer to the correct one. Such
diagnostic knowledge is valuable educational information for teachers.

In IRT, the nominal categories model (Bock, 1972) is useful for dealing with nominal
polytomous data, although the latent rank scale assumed in the model is continuous. The
purpose of this study is to develop a polytomous model for analyzing nominal polytomous
data, i.e., the nominal neural test (NNT) model, under the assumption that the latent scale
is rank-ordered. The NNT model is a natural extension of the DNT model, and it reduces

to the DN'T model when the number of nominal categories is two.



2 Method

Let us assume that the sample size is N, the number of items is n, and that the response
matrix of examinees is X = {z;;} (N xn). The variable z;; which is the response of examinee

1 to item j is
Tij € {17 T 7Oj}7 (1)

where C; is the number of categories in item j, and each ¢ (= 1,---,C};) is the nominal
category variable so that there is no quantitative relationship among their figures. In ad-
dition, Z = {z;;} (N x n) is the missing indicator matrix (Shojima, 2007e), where z;; is a
dichotomous variable coded 1 when x;; is observed and 0 when it is missing. Furthermore,
let u;j. be also a dichotomous variable coded 1 if z;; = ¢ and 0 otherwise.

When the number of latent ranks is (), the reference matrix of the nominal NTT model

becomes
V111 - Vii,ci-1 Y121 0 VinC,-1
n
V211 V21,01-1 V221 - V2nC,—-1
Vi=fugd= | 0 T {exX @G-} @
: . : : . : =
vQ11 o Uuei-1 V@21 trr UQm,Ch-1

where v, is the probability that the examinee in latent rank R, selects category ¢ (=
1,---,C; — 1) in item j. Each row vector in V' is the rank reference vector (RRV), and
each column vector is the item category reference profile (ICRP) of the corresponding item

category. In addition, the expanded reference matrix becomes

P11 - Pric P21 0 PiaC,
P211 - P21c1 P221 cc P2aC, -
P:{quC}: : .. : : .. : <QXZOj)’ (3)
: . : : . : g
P11 - Poi,ci P21 PQmn,C,

where pyj;. is the probability that the response of the examinee who belongs to latent rank
R,isc(=1,---,C;), and it is obtained by

Pgjec = Ygje (C = 17 te 7Cj - 1)7 (4>

C;—1
quCj =1- Z Vgje- (5>
c=1



The statistical learning procedure of the NNT model becomes as follows:

For (t=1;t<T;t=1t+1) (6)
— X <Randomly sort the row vectors of X. (7)
For (h=1; h < N; h=h+1) (8)
— Obtain zﬁf) and ug) from azg). 9)
— Select the winner node. (10)
— Obtain V" by updating V"1, (11)
— Obtain P®M from VM, (12)
— VLY oy ), (13)
— pUtLY) — ptN), (14)

where a:g) is the h-th row vector of X that is the input data at the t-th period. In addition,

zg) = {z,(;)} (n x 1) is the missing indicator vector for a:g), and u {uh]c} (>2;Cyx1)is

the binary variable vector corresponding to a:g). Furthermore, VR g the updated reference

matrix after learning input vector a:g), and P is the expanded reference matrix obtained
from V", The recommended initial value for Ugje 1s ¢/(Q + 1) when the item category is
the correct answer and (Q — ¢+ 1)/{(C; — 1)(Q + 1)} when it is the incorrect choice.

Line (7) is necessary for canceling the order effect of the input data on the statistical
learning. The winner node in Line (10) can be determined from the Bayesian method

(Shojima, 2007g) as follows:
Ry, : w—argmax{lnp uh |p”‘ ) +Inm,}, (15)

where 7, is the prior probability that the winner node is latent rank R,, and the first term

in the parenthes in the above equation is the likelihood . That is,

<

n Ci
( )|p(th 1) :HH ((;;Ch 1) Zh]uhjc (16)

j=1c=1

Equation (15) is identical to the maximum likelihood (ML) method (Shojima, 2007c) when
the prior probability is not assumed.

In (11), the reference matrix is updated by

VI = v 4 (h01))  (102)) @ (1ow,” — V), (17)



where

2
q—w
0= {2 = (1 55) ) @ a5
T—-t+1
ay = T aq, (19)

and

(T —t)oy + (t — 1)oy
T—-1 ’

(20)

O =

The factor héﬁl, called "tension”, controls the learning size of the RRV of latent rank R,.
It regulates geographically closer nodes to the winner node to have greater size of updating
their RRVs. The constant o determines the size of the tension, and it linearly decreases from
aq as t increases. In addition, o specifies the region where the learning propagates, and it
also reduces from o7 to oy as t approaches T.

From the estimate of the expanded reference matrix P calculated from the estimate of

the reference matrix V, the test reference profile (TRP; Shojima, 2007a) is given by

t= {tq ty = Zn:ichﬁqjc} (@ x 1), (21)

j=1 c=1
where wj, is the weight for item j when the correct choice of item j is category c.

The estimation of the latent rank for each examinee is identical to the winner node

selection method. That is, the latent rank of examinee i, R,., is estimated as follows:

R, : r; = arg megc{lnp(uimq) +Inm,}, (22)
qe
where
n Cj
p(uilp,) = [ [ [ ] (Boe) . (23)
j=1c=1

The maximum a posteriori (MAP) rank is obtained by the above equation if the prior
probability is supposed, and the maximum likelihood (ML) rank is estimated when no prior
probability is imposed. The latent rank distribution (LRD; Shojima, 2007a) is then

F={s

fo= Y fup (@x1), (24

where f;, is a dichotomous variable coded 1 if the latent rank of examinee 7 is R, and 0

otherwise.



In addition, the rank membership profile (RMP; Shojima, 2007c), which is useful for
reviewing the probabilities of each examinee’s belonging to respective ranks, and the posterior
RMP (Shojima, 2007g) are given by

u; P
pZ(ML) _ { Z(éWL) pgyL) p( ‘pq) } (Q x 1), (25)
Z /= 1p(u1’pq’>
and
u; D)
pEMAP) _ {pgéMAP) pﬁé‘“m p( ‘pq) q } (Q x 1). (26)
Z I 1p(uz‘pq’)ﬂq

From the RMPs and the posterior RMPs of all the examinees, the rank membership distri-
bution (RMD; Shojima, 2007¢) and the posterior RMD (Shojima, 2007g) are then obtained
by

g1b = { g sz 1 @x (27)
and
gMAP) — {géMAP Z MAP)} (Q x 1). (28)

Finally, the observation ratio profile (ORP; Shojima, 2007e) expresses each item’s ob-
served /missing response ratio through the latent rank scale. The unweighted and weighted
ORPs and the posterior weighted ORP are obtained by

N
20 = {Z(w L) _ 2z #iifia

bo@x (29)

D Vi
N (ML)
w) _ [ .wm|_w) _ D_im1 %ijPig
Zj _{qu Foi T N (ML)} (@ x 1), (30)
> iz Pig
and
N (MAP)
(PW) _ [ _(PW)|_(PW) _ 2uim1 ZisPig
Zj _{qu “qj N (MAP)} (@ x1), (31)
> _it1 Pig
respectively.



3 Analysis

3.1 Example 1

We analyzed data of a world history test. The sample size was 2,049, and the number
of items was 36. All items were multiple-choice single-answer items, and the number of
categories of each item was four or six. However, the categories for which selection ratios
are less than 10% were merged into category x.

This section describes the result of the ML method. The ML method is identical to the
Bayesian method when the prior distribution is uniform. The parameters necessary for the
statistical learning were determined as (Q, T, «, 01, 0¢) = (10,500, 0.1, 10, 1).

Figure 1 shows the item category reference profiles (ICRPs) of the 36 items. Figure 2
shows the test reference profile (TRP), the latent rank distribution (LRD), the rank mem-
bership distribution (RMD), the scatter plot of the scores and the estimated ML ranks,
and the rank membership profiles (RMPs) of examinees 1-16, respectively. In Figure 1, the
ICRP with an asterisk in each panel is the profile of the correct choice. In general, the
ICRPs of the correct choices have a tendency to increase as the latent rank becomes higher.
Although not every ICRP of the correct answer monotonically increases, a constraint to
make it monotonically increase can be added to the statistical learning process, as shown by
Shojima (2007a, 2007b). The nominal NTT model is effective for evaluating the behavior of
the incorrect choices. For example, the ICRP of category 3 of item 6 clearly shows that the
category is an attractive incorrect choice for lower rank examinees. In addition, item 15 is
virtually a two-alternative item even though the item originally has four categories.

Figure 2(a) shows that the TRP is monotonically increasing; nevertheless, the ICRPs of
all items do not always monotonically increase. That is, the scale assumed under the NTT
is rank-ordered in terms of the TRP. The NTT is a latent rank theory so that it becomes
self-contradictory unless the TRP is monotonically increasing. The possibility that the TRP
does not monotonically increase becomes large as the number of latent ranks, (), becomes
larger. Therefore, it is recommended that () be not more than ten to ensure that the TRP
is monotonic, and, logically speaking, () does not become large because the most that a test
can do is to grade examinees into several ranks.

As indicated by Shojima (2007a, 2007b, 2007c), the LRD and RMD (Figures 2(b) and
2(c)) shows that the frequencies of the latent ranks at both ends of the scale (R; and Ry)
are larger than those of the intermediate ranks, and this tendency is derived from the SOM.

The scatter plot in Figure 2(d) shows that the latent ranks of the examinees with the same
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Figure 2: TRP, LRD, RMD, Scatter Plot, and RMPs given by ML Method



score are not always estimated to be identical. In addition, it is clear from Figure 2(e) the
probability sizes of the examinees with the same estimated rank become different when their
response patterns are different. For example, the certainty that examinee 10 belongs to

latent rank Rj is stronger than for examinee 13.

3.2 Example 2

This section shows the result analyzed when the number of latent ranks is five. There
are many teachers who believe that the maximum number of ranks is five when they give
meaningful and substantial labels to the ranks. Therefore, it is worthwhile to report the
result when () is five, provided that the other parameters are the same as those set in
Example 1. Figure 3 shows the ICRPs of the 36 items, and Figure 4 shows the TRP, LRD,
RMD, the scatter plot of the scores and ranks, and the RMPs of examinees 1-16.

It is obvious from the difference between Figures 2 and 3 that ICRPs are inclined to be
monotonically increasing. In addition, the frequencies at both ends of the latent scale (R,

and Rj) are larger than those of the intermediate ranks, as observed in Example 1.

3.3 Example 3

In Examples 1 and 2, the frequencies of the latent ranks at both ends are inclined to
be larger. However, there are some teachers and test administrators who want to grade
examinees into latent ranks with nearly equal frequencies. Therefore, the result of the
Bayesian method for () = 10 is shown in this section. The prior distribution used in the

analysis is

(32)

~ 0.08500 ¢=1,10
71010375 ¢g=2,---,9,

and the other conditions are identical to those in Example 1.

Figure 5 shows the ICRPs of the 36 items, and Figure 6 shows the TRP, the posterior
LRD, the posterior RMD, the scatter plot of the scores and the MAP ranks, and the posterior
RMPs of examinees 1-16. It is clear from the posterior LRD and RMD (Figures 6(b) and
6(c)) that the frequencies of the latent ranks at both ends of the scale are lower than the ones
given by the ML method (Figures 2(b) and 2(b)). This effect is promoted when a stronger
prior distribution is selected. In addition, the probabilities of the latent ranks at both ends
of the scale are lower in the posterior RMPs (Figure 6(d)) as compared to the RMPs given
by the ML method (Figure 2(d)). For example, the probability that examinee 1 belongs to
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latent rank R; is about 0.5 with the Bayesian method, whereas it is around 0.6 with the ML
method. In addition, the latent rank of examinee 4 is estimated to be Ry with the Bayesian
method while it is estimated to be R; with the ML method.

4 Discussion

We proposed the nominal neural test (NNT) model, which is a polytomous NTT model for
analyzing nominal categories data. The NNT model is effective for evaluating the statistical
features of correct and incorrect choices. In addition, it reduces to the dichotomous NTT
model when the number of items is two, so it is a natural extension of the dichotomous NTT
model. Furthermore, it is useful to impose the constraint of monotonicity (Shojima, 2007a,
2007b) on the ICRP of the correct choice when test administrator thinks it natural that the
ICRP of the correct choice monotonically increases.

The ICRP of the correct choice is determined not only by the characteristics of the correct
choice but also by the characteristics of the incorrect choices. Therefore, it is important to
simultaneously review the ICRPs of the correct and incorrect choices to deepen our knowledge

about the features or properties of the item.
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