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Abstract

We developed the nominal neural test (NNT) model, which is a model of neural test

theory (NTT) for analyzing nominal polytomous data. The NNT model is useful for evalu-

ating the statistical characteristics of correct and incorrect choices of multiple-choice items.

It becomes identical to the dichotomous NTT model when all items are binary. We report

three analysis examples using the maximum likelihood (ML) method when the number of

latent ranks Q equals 10 and 5, and the Bayesian method when Q = 10.

Key words: neural test theory, nominal neural test model, polytomous data, item category

reference profile, latent rank theory.

名義ニューラルテストモデル:

多値の名義データのためのニューラルテストモデル

荘島宏二郎 1 大久保智哉 1,2 石塚智一 1

要約

本研究では，多値の名義カテゴリデータを分析するためのニューラルテストモデルであ

る名義ニューラルテスト (nominal neural test, NNT)モデルを提案した．NNTモデルは，多

肢選択式問題において正答選択肢だけでなく誤答選択肢まで含めて分析するときに有効であ

る．NNTモデルは，項目が 2値のときには 2値の NTTモデルと同一である．分析例では，

潜在ランク数を 10のもとでの最尤推定法，潜在ランク数が 5のもとでの最尤推定法，潜在

ランク数が 10のときのベイズ推定法の結果を示した．

キーワード: ニューラルテスト理論，名義ニューラルテストモデル，多値データ，項目カ

テゴリ参照プロファイル，潜在ランク理論．
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1 Introduction

Neural test theory (NTT; Shojima, 2007a) is a latent rank theory (LRT; Shojima, 2007f)

for analyzing test data, and its mechanism is derived from the self-organizing map (SOM;

Kohonen, 1995). The assumed latent scale in the NTT is rank-ordered, while the scale

supposed in item response theory (IRT; e.g., Lord, 1980), which is the most prevailing test

theory at present is continuous.

It is valid to install a rank-ordered scale in test theory because a test cannot distinguish

two examinees who have nearly equal abilities. Although the abilities of examinees contin-

uously vary, tests don’t have high enough resolution to capture them. The most that a test

can do is to grade examinees into several ranks.

Shojima (2007b) developed a graded neural test (GNT) model, which is a polytomous

neural test model for analyzing ordered polytomous data, by extending the dichotomous

neural test (DNT) model for binary data of true/false items. The GNT model reduces to

the DNT model when all items are binary, and it is effective for analyzing testlet items

composed of a few or several small questions and Likert-type (i.e., five-point agree-disagree

scale) items of psychological questionnaires. However, polytomous data is not always ordered

and sometimes nominal.

In fact, almost all true/false items are originally multiple-choice single-answer items,

which are usually composed of one correct and a few wrong choices. That is, the data are

originally nominal, and they are practically coded 1 (true) and 0 (false). Therefore, the

DNT model can analyze multiple-choice items, although it cannot be used to obtain the

information about incorrect choices.

However, it is important to analyze nominal data as they are. Such an analysis is neces-

sary to clarify the variety of statistical characteristics of each nominal choice. For example,

the analysis might reveal that an incorrect choice is inclined to be selected not only by the

examinees with low ability but also by those with mid-level or even high ability. Or, the

analysis can tell us which of two incorrect choices A and B is closer to the correct one. Such

diagnostic knowledge is valuable educational information for teachers.

In IRT, the nominal categories model (Bock, 1972) is useful for dealing with nominal

polytomous data, although the latent rank scale assumed in the model is continuous. The

purpose of this study is to develop a polytomous model for analyzing nominal polytomous

data, i.e., the nominal neural test (NNT) model, under the assumption that the latent scale

is rank-ordered. The NNT model is a natural extension of the DNT model, and it reduces

to the DNT model when the number of nominal categories is two.
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2 Method

Let us assume that the sample size is N , the number of items is n, and that the response

matrix of examinees is X = {xij} (N×n). The variable xij which is the response of examinee

i to item j is

xij ∈ {1, · · · , Cj}, (1)

where Cj is the number of categories in item j, and each c (= 1, · · · , Cj) is the nominal

category variable so that there is no quantitative relationship among their figures. In ad-

dition, Z = {zij} (N × n) is the missing indicator matrix (Shojima, 2007e), where zij is a

dichotomous variable coded 1 when xij is observed and 0 when it is missing. Furthermore,

let uijc be also a dichotomous variable coded 1 if xij = c and 0 otherwise.

When the number of latent ranks is Q, the reference matrix of the nominal NTT model

becomes

V = {vqjc} =

⎡
⎢⎢⎢⎣

v1,1,1 · · · v1,1,C1−1 v1,2,1 · · · v1,n,Cn−1

v2,1,1 · · · v2,1,C1−1 v2,2,1 · · · v2,n,Cn−1
...

. . .
...

...
. . .

...
vQ,1,1 · · · vQ,1,C1−1 vQ,2,1 · · · vQ,n,Cn−1

⎤
⎥⎥⎥⎦

{
Q ×

n∑
j=1

(Cj − 1)
}

, (2)

where vqjc is the probability that the examinee in latent rank Rq selects category c (=

1, · · · , Cj − 1) in item j. Each row vector in V is the rank reference vector (RRV), and

each column vector is the item category reference profile (ICRP) of the corresponding item

category. In addition, the expanded reference matrix becomes

P = {pqjc} =

⎡
⎢⎢⎢⎣

p1,1,1 · · · p1,1,C1 p1,2,1 · · · p1,n,Cn

p2,1,1 · · · p2,1,C1 p2,2,1 · · · p2,n,Cn

...
. . .

...
...

. . .
...

pQ,1,1 · · · pQ,1,C1 pQ,2,1 · · · pQ,n,Cn

⎤
⎥⎥⎥⎦

(
Q ×

n∑
j=1

Cj

)
, (3)

where pqjc is the probability that the response of the examinee who belongs to latent rank

Rq is c (= 1, · · · , Cj), and it is obtained by

pqjc = vqjc (c = 1, · · · , Cj − 1), (4)

pqjCj
= 1 −

Cj−1∑
c=1

vqjc. (5)
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The statistical learning procedure of the NNT model becomes as follows:

For (t=1; t ≤ T ; t = t + 1) (6)

— X(t) ⇐Randomly sort the row vectors of X. (7)

For (h=1; h ≤ N ; h = h + 1) (8)

— Obtain z
(t)
h and u

(t)
h from x

(t)
h . (9)

— Select the winner node. (10)

— Obtain V (t,h) by updating V (t,h−1). (11)

— Obtain P (t,h) from V (t,h). (12)

— V (t+1,0) ⇐ V (t,N). (13)

— P (t+1,0) ⇐ P (t,N). (14)

where x
(t)
h is the h-th row vector of X(t) that is the input data at the t-th period. In addition,

z
(t)
h = {z(t)

hj } (n× 1) is the missing indicator vector for x
(t)
h , and u

(t)
h = {u(t)

hjc} (
∑

j Cj × 1) is

the binary variable vector corresponding to x
(t)
h . Furthermore, V (t,h) is the updated reference

matrix after learning input vector x
(t)
h , and P (h,t) is the expanded reference matrix obtained

from V (h,t). The recommended initial value for vqjc is q/(Q + 1) when the item category is

the correct answer and (Q − q + 1)/{(Cj − 1)(Q + 1)} when it is the incorrect choice.

Line (7) is necessary for canceling the order effect of the input data on the statistical

learning. The winner node in Line (10) can be determined from the Bayesian method

(Shojima, 2007g) as follows:

Rw : w = arg max
q∈Q

{
ln p(u

(t)
h |p(t,h−1)

q ) + ln πq

}
, (15)

where πq is the prior probability that the winner node is latent rank Rq, and the first term

in the parenthes in the above equation is the likelihood . That is,

p(u
(t)
h |p(t,h−1)

q ) =

n∏
j=1

Cj∏
c=1

(
p

(t,h−1)
qjc

)z
(t)
hj u

(t)
hjc . (16)

Equation (15) is identical to the maximum likelihood (ML) method (Shojima, 2007c) when

the prior probability is not assumed.

In (11), the reference matrix is updated by

V (t,h) = V (t,h−1) + (h(t)1′
n) � (1Qz

(t)
h

′) � (1Qu
(t)
h

′ − V (t,h−1)), (17)
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where

h(t) =
{

h(t)
qw

∣∣∣h(t)
qw = αt exp

(
−(q − w)2

2σ2
t

)}
(Q × 1), (18)

αt =
T − t + 1

T
α1, (19)

and

σt =
(T − t)σ1 + (t − 1)σ0

T − 1
. (20)

The factor h
(t)
qw, called ”tension”, controls the learning size of the RRV of latent rank Rq.

It regulates geographically closer nodes to the winner node to have greater size of updating

their RRVs. The constant α determines the size of the tension, and it linearly decreases from

α1 as t increases. In addition, σ specifies the region where the learning propagates, and it

also reduces from σ1 to σ0 as t approaches T .

From the estimate of the expanded reference matrix P̂ calculated from the estimate of

the reference matrix V̂ , the test reference profile (TRP; Shojima, 2007a) is given by

t =
{

tq

∣∣∣tq =
n∑

j=1

Cj∑
c=1

wjcp̂qjc

}
(Q × 1), (21)

where wjc is the weight for item j when the correct choice of item j is category c.

The estimation of the latent rank for each examinee is identical to the winner node

selection method. That is, the latent rank of examinee i, Rri
, is estimated as follows:

Rri
: ri = arg max

q∈Q
{ln p(ui|p̂q) + ln πq}, (22)

where

p(ui|p̂q) =
n∏

j=1

Cj∏
c=1

(p̂qjc)
zijuijc. (23)

The maximum a posteriori (MAP) rank is obtained by the above equation if the prior

probability is supposed, and the maximum likelihood (ML) rank is estimated when no prior

probability is imposed. The latent rank distribution (LRD; Shojima, 2007a) is then

f =
{

fq

∣∣∣fq =
N∑

i=1

fiq

}
(Q × 1), (24)

where fiq is a dichotomous variable coded 1 if the latent rank of examinee i is Rq and 0

otherwise.
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In addition, the rank membership profile (RMP; Shojima, 2007c), which is useful for

reviewing the probabilities of each examinee’s belonging to respective ranks, and the posterior

RMP (Shojima, 2007g) are given by

p
(ML)
i =

{
p

(ML)
iq

∣∣∣p(ML)
iq =

p(ui|p̂q)∑Q
q′=1 p(ui|p̂q′)

}
(Q × 1), (25)

and

p
(MAP )
i =

{
p

(MAP )
iq

∣∣∣p(MAP )
iq =

p(ui|p̂q)πq∑Q
q′=1 p(ui|p̂q′)πq′

}
(Q × 1). (26)

From the RMPs and the posterior RMPs of all the examinees, the rank membership distri-

bution (RMD; Shojima, 2007c) and the posterior RMD (Shojima, 2007g) are then obtained

by

g(ML) =
{

g(ML)
q

∣∣∣g(ML)
q =

N∑
i=1

p
(ML)
iq

}
(Q × 1) (27)

and

g(MAP ) =
{
g(MAP )

q

∣∣∣g(MAP )
q =

N∑
i=1

p
(MAP )
iq

}
(Q × 1). (28)

Finally, the observation ratio profile (ORP; Shojima, 2007e) expresses each item’s ob-

served/missing response ratio through the latent rank scale. The unweighted and weighted

ORPs and the posterior weighted ORP are obtained by

z
(U)
j =

{
z

(U)
qj

∣∣∣z(U)
qj =

∑N
i=1 zijfiq∑N

i=1 fiq

}
(Q × 1) (29)

z
(W )
j =

{
z

(W )
qj

∣∣∣z(W )
qj =

∑N
i=1 zijp

(ML)
iq∑N

i=1 p
(ML)
iq

}
(Q × 1), (30)

and

z
(PW )
j =

{
z

(PW )
qj

∣∣∣z(PW )
qj =

∑N
i=1 zijp

(MAP )
iq∑N

i=1 p
(MAP )
iq

}
(Q × 1), (31)

respectively.
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3 Analysis

3.1 Example 1

We analyzed data of a world history test. The sample size was 2,049, and the number

of items was 36. All items were multiple-choice single-answer items, and the number of

categories of each item was four or six. However, the categories for which selection ratios

are less than 10% were merged into category x.

This section describes the result of the ML method. The ML method is identical to the

Bayesian method when the prior distribution is uniform. The parameters necessary for the

statistical learning were determined as (Q, T, α, σ1, σ0) = (10, 500, 0.1, 10, 1).

Figure 1 shows the item category reference profiles (ICRPs) of the 36 items. Figure 2

shows the test reference profile (TRP), the latent rank distribution (LRD), the rank mem-

bership distribution (RMD), the scatter plot of the scores and the estimated ML ranks,

and the rank membership profiles (RMPs) of examinees 1–16, respectively. In Figure 1, the

ICRP with an asterisk in each panel is the profile of the correct choice. In general, the

ICRPs of the correct choices have a tendency to increase as the latent rank becomes higher.

Although not every ICRP of the correct answer monotonically increases, a constraint to

make it monotonically increase can be added to the statistical learning process, as shown by

Shojima (2007a, 2007b). The nominal NTT model is effective for evaluating the behavior of

the incorrect choices. For example, the ICRP of category 3 of item 6 clearly shows that the

category is an attractive incorrect choice for lower rank examinees. In addition, item 15 is

virtually a two-alternative item even though the item originally has four categories.

Figure 2(a) shows that the TRP is monotonically increasing; nevertheless, the ICRPs of

all items do not always monotonically increase. That is, the scale assumed under the NTT

is rank-ordered in terms of the TRP. The NTT is a latent rank theory so that it becomes

self-contradictory unless the TRP is monotonically increasing. The possibility that the TRP

does not monotonically increase becomes large as the number of latent ranks, Q, becomes

larger. Therefore, it is recommended that Q be not more than ten to ensure that the TRP

is monotonic, and, logically speaking, Q does not become large because the most that a test

can do is to grade examinees into several ranks.

As indicated by Shojima (2007a, 2007b, 2007c), the LRD and RMD (Figures 2(b) and

2(c)) shows that the frequencies of the latent ranks at both ends of the scale (R1 and R10)

are larger than those of the intermediate ranks, and this tendency is derived from the SOM.

The scatter plot in Figure 2(d) shows that the latent ranks of the examinees with the same
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Figure 1: Item Category Reference Profiles (ML)

7



(a) Test Reference Profile (ML) (b) Latent Rank Distribution (ML)

(c) Rank Membership Distribution (ML) (d) Scatter Plot of Scores and Ranks (ML)

(e) Rank Membership Profiles of Examinees 1–16 (ML)

Figure 2: TRP, LRD, RMD, Scatter Plot, and RMPs given by ML Method
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score are not always estimated to be identical. In addition, it is clear from Figure 2(e) the

probability sizes of the examinees with the same estimated rank become different when their

response patterns are different. For example, the certainty that examinee 10 belongs to

latent rank R5 is stronger than for examinee 13.

3.2 Example 2

This section shows the result analyzed when the number of latent ranks is five. There

are many teachers who believe that the maximum number of ranks is five when they give

meaningful and substantial labels to the ranks. Therefore, it is worthwhile to report the

result when Q is five, provided that the other parameters are the same as those set in

Example 1. Figure 3 shows the ICRPs of the 36 items, and Figure 4 shows the TRP, LRD,

RMD, the scatter plot of the scores and ranks, and the RMPs of examinees 1–16.

It is obvious from the difference between Figures 2 and 3 that ICRPs are inclined to be

monotonically increasing. In addition, the frequencies at both ends of the latent scale (R1

and R5) are larger than those of the intermediate ranks, as observed in Example 1.

3.3 Example 3

In Examples 1 and 2, the frequencies of the latent ranks at both ends are inclined to

be larger. However, there are some teachers and test administrators who want to grade

examinees into latent ranks with nearly equal frequencies. Therefore, the result of the

Bayesian method for Q = 10 is shown in this section. The prior distribution used in the

analysis is

πq =

{
0.08500 q = 1, 10

0.10375 q = 2, · · · , 9,
(32)

and the other conditions are identical to those in Example 1.

Figure 5 shows the ICRPs of the 36 items, and Figure 6 shows the TRP, the posterior

LRD, the posterior RMD, the scatter plot of the scores and the MAP ranks, and the posterior

RMPs of examinees 1–16. It is clear from the posterior LRD and RMD (Figures 6(b) and

6(c)) that the frequencies of the latent ranks at both ends of the scale are lower than the ones

given by the ML method (Figures 2(b) and 2(b)). This effect is promoted when a stronger

prior distribution is selected. In addition, the probabilities of the latent ranks at both ends

of the scale are lower in the posterior RMPs (Figure 6(d)) as compared to the RMPs given

by the ML method (Figure 2(d)). For example, the probability that examinee 1 belongs to
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Figure 3: Item Reference Profiles (Q = 5)
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(a) TRP (Q = 5) (b) Posterior LRD (Q = 5)

(c) Posterior RMD (Q = 5) (d) Scatter Plot (Q = 5)

(e) Posterior Rank Membership Profiles of Examinees 1-16 (Q = 5)

Figure 4: Figures given by Bayesian Method for Q = 5
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Figure 5: Item Reference Profiles (Trapezoidal Prior Distribution)
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(a) TRP (Trapezoidal Prior Dist.) (b) Posterior LRD (Trapezoidal Prior Dist.)

(c) Posterior RMD (Trapezoidal Prior Dist.) (d) Scatter Plot (Trapezoidal Prior Dist.)

(e) Posterior Rank Membership Profiles of Examinees 1-16 (Trapezoidal Prior Dist.)

Figure 6: Figures given by Bayesian Method with Trapozoidal Prior Distribution
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latent rank R1 is about 0.5 with the Bayesian method, whereas it is around 0.6 with the ML

method. In addition, the latent rank of examinee 4 is estimated to be R2 with the Bayesian

method while it is estimated to be R1 with the ML method.

4 Discussion

We proposed the nominal neural test (NNT) model, which is a polytomous NTT model for

analyzing nominal categories data. The NNT model is effective for evaluating the statistical

features of correct and incorrect choices. In addition, it reduces to the dichotomous NTT

model when the number of items is two, so it is a natural extension of the dichotomous NTT

model. Furthermore, it is useful to impose the constraint of monotonicity (Shojima, 2007a,

2007b) on the ICRP of the correct choice when test administrator thinks it natural that the

ICRP of the correct choice monotonically increases.

The ICRP of the correct choice is determined not only by the characteristics of the correct

choice but also by the characteristics of the incorrect choices. Therefore, it is important to

simultaneously review the ICRPs of the correct and incorrect choices to deepen our knowledge

about the features or properties of the item.
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