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The batch-type neural test model:

A latent rank model with the mechanism of generative topographic mapping

Kojiro Shojima

Abstract

This study investigated a batch-type learning version of the neural test model, in which

the mechanism of a generative topographic mapping (GTM) and a linear filter smoothing

were used for estimating the IRPs. The IRP estimates produced by the batch-type version

of the NTT model were invariant in each calculation, and the computation time required for

identifying the NTT model with the GTM mechanism was much shorter than that of the

NTT model with the SOM mechanism. Furthermore, the optimal linear filter was estimated

by minimizing an information criterion reflecting the smoothness of the IRPs in the degrees of

freedom of the model, although the way of selecting the information criterion to be minimized

emerges as a future issue.

Key words: neural test theory, latent rank theory, item reference profile, EM algorithm,

smoothing, minimum information estimation, generative topographic mapping.

バッチ型ニューラルテストモデル:

生成トポグラフィックマッピングのメカニズムを利用した潜在ランク理論

荘島宏二郎

要約

本研究では，バッチ型学習のニューラルテスト理論モデルを提案した．そこでは，項目

参照プロファイル (IRP)を推定する際に，生成トポグラフィックマッピングのメカニズムと

線形フィルタによる平滑化を用いた．バッチ型NTTモデルは，毎回の計算結果が変わらず，

また，計算時間が大幅に短縮されるメリットがある．また，IRPを推定する際に，モデルの

滑らかさをモデルの自由度に反映させた情報量基準を最小化することによって最適な線形

フィルタを推定する方法を論じた．目的関数となる情報量基準をどのように選択するか課題

が残った．

キーワード: ニューラルテスト理論, 潜在ランク理論, 項目参照プロファイル, EMアルゴ

リズム，平滑化，最小情報量推定，生成トポグラフィックマッピング．
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1 Introduction

The neural test theory (NTT; Shojima, 2008a, 2008b) is a theory for test standardization

that uses the mechanism of a self-organizing map (SOM; e.g., Kohonen, 1990). Although

the assumed latent scale is continuous in the classical test theory and item response theory

(e.g., Lord, 1980; Hambleton & Swaminathan, 1985), the NTT assumes that the latent scale

is ordinal. This is because the resolution of tests generally is not high enough to measure

human abilities on a continuous scale, where the resolution is the power to discriminate the

difference between two or more things, and the most that tests can do is to grade examinees

into several ranks (Shojima, 2008a, 2008b).

In the ordinal scale of the NTT, each examinee is estimated to belong to one of the

latent ranks in R1, · · · , RQ, where Q is the number of latent ranks. Although the size of Q

can be determined by referring to some goodness-of-fit indices, it is basically up to the test

administrator or data analyst. In addition, an item reference profile (IRP) that represents

the transition of the correct answer ratio through the latent rank scale for each item is

obtained in the NTT analysis.

The IRPs in the NTT corresponds to the item parameters in the IRT because the esti-

mation of the IRPs is related to test standardization, especially, test scaling. Test standard-

ization is a compositive concept that includes test scaling and equating. Test scaling is the

procedure to define a scale or a space for an ability that the test measures and to clarify the

statistical features of the test items in the space. In the NTT, the space is the latent ordinal

scale, and an item can be said to be scaled when the IRP of the item is estimated, because

the IRP represents the statistical feature of each item in the latent space. In addition, test

equating is the procedure to prepare a common scale for comparing different test scales.

In addition, the IRP is important for computing the test reference profile (TRP; Shojima,

2008a) and rank membership profile (RMP; Shojima, 2008b) which are inevitable for tests

administered using the NTT. The TRP is the weighted sum of the IRPs of all the items,

and it is useful to review the expected scores of the examinees belonging to respective latent

ranks. In addition, the RMP is the posterior distribution of the latent rank to which each

examinee belongs.

However, the IRP estimate differs in each calculation. Differences between estimates can

be obtained even when the estimation process is rerun under the same settings. This is

because the NTT uses the SOM mechanism. The SOM is categorized as an unsupervised

statistical learning model, which is one of the neural network models. In the estimation

process of a statistical learning model, the model learns each data after the data has been
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input into the model. This is why, the learning process includes a step to randomize the

input order to cancel out the sequence effect. This randomization step is effective to make

the model learn the input data in an unbiased manner, which causes the slight differences

between the IRP estimates in every calculation even for the same settings. The statistical

features of the items are not invariant over time, and the differences can be reduced when

the convergence criterion is set more rigorously. However, some data analysts and test

administrators dislike the characteristics derived from the SOM mechanism.

The purpose of this study is to investigate a batch-type version of the NTT model to ob-

tain invariant IRP estimates. This model uses the mechanism of the generative topographic

mapping (GTM; Bishop, Svensen, & Williams, 1998). The GTM was originally developed

as a batch-type SOM, and it uses EM (expectation maximization) algorithm (Dempster,

Laird, & Rubin, 1977) in the statistical learning process. The procedure of the GTM is

very similar to the estimation method of the latent class models (LCMs; e.g., Titterington,

Smith, & Makov, 1985; McLachlan, & Peel, 2000; Croon, 2002). However, the IRPs become

nonsmooth unlike the IRPs estimated by the SOM mechanism as a result of simply applying

the GTM mechanism or the estimation method of the LCMs. In this paper, we propose

an estimation framework for obtainining smooth and invariant IRPs by retrofitting the EM

algorithm with an elastic mechanism.

2 Method

2.1 Statistical Learning Framework

Let us assume that the sample size is N , the number of items is n, and the response

data of the N examinees for the n items is U = {uij} (N × n), where uij is a dichotomous

variable coded 1 when the response of examinee i to item j is correct and 0 otherwise. In

addition, let us also assume that Z = {zij} (N × n) is the missing indicator matrix, where

zij is also a dichotomous variable coded 1 if uij is observed and 0 if the response is missing.

Nonresponses are generally treated as observed (z = 1) and incorrect (u = 1).

Let us also assume that the number of latent ranks in the latent ordinal scale is Q and

the q-th latent rank is denoted Rq (q = 1, · · · , Q), where the ability level of Rq is supposed

to be higher than that of Rq−1. In addition, F = {fiq} (N × Q) is the rank membership

indicator (RMI) matrix, where fiq is a dichotomous variable coded 1 if examinee i belongs

to latent rank Rq and 0 otherwise.

Let us further assume that V = {vqj} (Q × n) is the rank reference matrix (RRM;
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Shojima, 2008b), where vqj is the rank reference element (RRE) standing for the correct

answer ratio of the examinees who belong to latent rank Rq for item j. That is,

Pr(Uj = 1|Fq = 1) = vjq, (1)

where Uj is a random response variable for item j and Fq is also a random variable of the

rank membership indicator of latent rank Rq. The j-th row vector of the RRM, vj = {vjq}
(Q × 1), is the item reference profile (IRP) of item j, and the q-th column vector of the

RRM, vq = {vjq} (n × 1), is the rank reference vector of latent rank Rq.

With reference to the procedure shown by Shojima (2008a, 2008b), the estimation frame-

work for the batch-type NTT model is given by

Obtain Z from U . (2)

Define V (0). (3)

For (t=1; t ≤ T ; t = t + 1) (4)

— Obtain F (t) by using U and V (t−1). (5)

— Obtain E(t) by using F (t). (6)

— Obtain V (t) by using E(t). (7)

Line (4) indicates that Lines (5)–(7) are repeatedly executed T times. In addition, F (t)

is the RMI at the t-th period in the statistical learning process. Similarly, E(t) is the elastic

RMI at the t-th period, which is obtained by operating F (t), as explained later in Section

2.3. Furthermore, V (t) is the RRM at the t-th period; Shojima (2008b) recommended an

initial value V (0) of

v
(0)
jq = q/(Q + 1) (q = 1, · · · , Q; ∀j ∈ n). (8)

2.2 Expected Log-Likelihood

The likelihood that U is observed provided that the RRM V and RMI F are given is

p(U |V , F ) =

N∏
i=1

Q∏
q=1

p(ui|vq)
fiq =

N∏
i=1

Q∏
q=1

n∏
j=1

{
v

uij

jq (1 − vjq)
1−uij

}zijfiq , (9)

where ui = {uij} (n × 1) is the response vector of examinee i. The unknown variables in

the above equation are V and F . The RMI F is called nuisance parameters because the

number of elements in F varies according to the sample size N . On the other hand, V is

structural parameters because the number of elements in V is invariant with respect to N .
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When the structural parameter(s) and nuisance parameter(s) are simultaneously included

in the likelihood, the log-likelihood is generally marginalized with respect to the nuisance

parameter(s). In such cases, the EM algorithm (Dempster, Laird, & Rubin, 1977) is a useful

method.

The EM algorithm is a numerical solution method for estimating the structural parame-

ters by repeatedly applying E-steps and M-steps. In the E-steps, the expected log-likelihood

is obtained by integrating the log-likelihood with respect to the nuisance parameters over

the posterior distribution of the nuisance parameters. The E-step in the t-th period is given

by

ln p(V |U ) = E
� |� ,� (t−1)[ln p(V |U , F )], (10)

where V (t−1) is the estimate of the RRM obtained in the M-step in the t− 1-th period. The

right-hand side of the above equation is decomposed as

E
� |� ,� (t−1) [ln p(V |U , F )]

=E
� |� ,� (t−1) [ln p(U |V , F )] + E

� |� ,� (t−1) [ln p(V |F )] − E
� |� ,� (t−1) [ln p(U |F )] (11)

by using the Bayesian theorem. The first term of the above equation is

E
� |� ,� (t−1) [ln p(U |V , F )] =

N∑
i=1

Q∑
q=1

f
(t)
iq ln p(ui|vq)

=

N∑
i=1

Q∑
q=1

n∑
j=1

f
(t)
iq zij

{
uij ln vjq + (1 − uij) ln(1 − vjq)

}
, (12)

where f
(t)
iq is the posterior probability that examinee i belongs to latent rank Rq at the t-th

EM cycle given the RRM at the t−1-th period, V (t−1), and the response vector of examinee

i, ui. That is,

p(fiq|ui, V
(t−1)) = f

(t)
iq =

p(ui|v(t−1)
q )πiq∑Q

q′=1 p(ui|v(t−1)
q′ )πiq′

(i = 1, · · · , N ; q = 1, · · · , Q), (13)

where πiq is the prior probability of fiq. The above equation corresponds to Line (5) in the

estimation framework shown in Section 2.2. In addition, the i-th row vector in F (t), f
(t)
i , is

the posterior distribution of examinee i belonging to the respective latent ranks, and it is

the rank membership profile (RMP; Shojima, 2008b) of examinee i.

Next, the second term of Equation (11) becomes

E
� |� ,� (t−1)[ln p(V |F )] = ln p(V ), (14)
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and this term can be regarded as the prior distribution of the structural parameters. Further-

more, the third term of Equation (11) is reduced to a constant. Consequently, the expected

log-likelihood of Equation (10) is given by

ln p(V |U ) =

N∑
i=1

Q∑
q=1

n∑
j=1

f
(t)
iq zij

{
uij ln vjq + (1 − uij) ln(1 − vjq)

}
+ ln p(V ) + const. (15)

2.3 Scale Elasticity and Weakly Ordinal Alignment Condition

In the M-steps of the usual EM algorithm, the expected log-likelihood (Equation 15)

is optimized with respect to the structural parameters V . This procedure is also almost

identical to a simple application of the GTM mechanism or the estimation method of the

LCMs to the NTT. Accordingly, the ordinality of the latent scale in the NTT is not still

satisfied because a mechanism that makes the latent scale ordinal is not built into the GTM

mechanism or the estimation method for the LCMs themselves.

Shojima (2008b) defined weakly and strongly ordinal alignment conditions for expressing

the degree of ordinality of the latent scale. The weak condition is satisfied when the test ref-

erence profile (TRP) is monotonically increasing but every IRP is not necessarily monotonic,

where the TRP is the weighted sum of the IRPs of the test items and expresses the expected

scores of the examinees belonging to the respective latent ranks. Meanwhile, the strong con-

dition requires all the IRPs to be monotonic, so the TRP inevitably increases monotonically.

The monotonicity of the TRP is the only evidence that can show the ordinality of the NTT

scale. Therefore, at least the weak condition must be satisfied to attain the ordinality on

the NTT scale.

In addition, the IRPs cannot become smooth by a direct application of the GTM mecha-

nism or the estimation method for the LCMs to the estimation method for the NTT model,

while the IRPs do become smooth in the NTT model with the SOM mechanism. This is

because the SOM mechanism itself has a property that makes the IRPs smooth. In fact, the

weak condition is easily attained in the NTT model with the SOM mechanism because the

smoothness of each IRP has the effect of making the IRP monotonic, and the monotonicity

of each IRP leads to the monotonicity of the TRP, which is the requirement of the weak

condition.

Furthermore, it is important to make the IRPs smooth from the viewpoint of prediction

because the IRP of each item can be said to be a nonlinear and nonparametric regression

of the correct answer ratio of the item on the latent rank and is required to predict the

correct answer ratio of the examinees belonging to each latent rank. It is well known that
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the predictive capability of a regression model for future data becomes precise when the

regression line of the model is smooth (e.g., Green & Silverman, 1994; Ramsay & Silverman,

1997; Eubank, 1999; Hastie, Tibshirani, & Friedman, 2001)．

In the NTT model with the SOM mechanism, the weakly ordinal alignment condition is

highly likely to be satisfied by making the IRPs smooth. That is, it is necessary to improve

the elasticity of the scale to satisfy the weak condition in the NTT model with the GTM

mechanism. Therefore, it is of great significance to obtain the elastic rank membership

indicator E(t) from the rank membership indicator (RMI) F (t) because the elasticity of E(t)

has a direct effect on the monotoniciy of each row vector of V (t).

Although there are many ways to obtain the elastic RMI E(t), one useful way is as follows:

E(t) = F (t)G. (16)

That is, the elastic RMI is given by weighting the RMI with a smoothing matrix G, where

G = [g1 · · ·gq · · ·gQ] (Q × Q) (17)

and each column vector in G is standardized to make the sum of the vector one (g′
q1Q = 1),

where 1Q is a vector with size Q in which all the elements are one. Accordingly, each element

of E(t), e
(t)
iq , becomes a constant such that f

(t)
i (the i-th row vector of F (t)) is smoothed by

gq (the q-th column vector of G).

In some cases, it is effective to set the smoothing matrix in advance. For example, for

Q = 5, if G is given by

G =

⎡
⎢⎢⎢⎢⎣

1/2 1/3 0 0 0
1/2 1/3 1/3 0 0
0 1/3 1/3 1/3 0
0 0 1/3 1/3 1/2
0 0 0 1/3 1/2

⎤
⎥⎥⎥⎥⎦

, (18)

then e
(t)
iq becomes the moving average of f

(t)
iq−1, f

(t)
iq , and f

(t)
iq+1. The elements in the first

and fifth columns are adjusted to make the sums of the columns equal to one. The weights

like {1/3, 1/3, 1/3} are called a linear filter. As for the linear filter φb being desirable for

the batch-type NTT model, the number of elements in the filter is odd, and the elements

are symmetric about the central element and the more peripheral elements in the filter

become smaller. In addition, it is satisfactory that the number of elements of the linear

filter, b, is three or five by considering that the realistic range of the number of latent ranks

is 3 ≤ Q ≤ 20. Linear filters with three and five elements, φ3 and φ5, that satisfy such
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conditions are

φ3 =
{1 − φ

2
, φ,

1 − φ

2

} (
0 ≤ 1 − φ

2
≤ φ ≤ 1

)
, (19)

and

φ5 =
{1 − φ1 − 2φ2

2
, φ2, φ1, φ2,

1 − φ1 − 2φ2

2
}

(
0 ≤ 1 − φ1 − 2φ2

2
≤ φ2 ≤ φ1 ≤ 1

)
. (20)

Furthermore, it is desirable to use a different linear filter according to the number of latent

ranks. The parameter φ in Equation (19) that we recommend is

φ =

⎧⎪⎨
⎪⎩

1.05 − 0.05Q (1 ≤ Q ≤ 5)

1.00 − 0.04Q (5 ≤ Q ≤ 10)

0.80 − 0.02Q (10 ≤ Q ≤ 20)

. (21)

An extreme example of the linear filter is {· · · , 0, 1, 0, · · · }. In this case, the smooth-

ing matrix becomes an identity matrix with size Q (G = IQ), and the elastic RMI be-

comes identical to the RMI (E(t) = F (t)). In addition, when using another extreme lin-

ear filter, that is Q−11b (b ≤ Q), all the elements of the smoothing matrix then become

1/Q, which subsequently causes all the elements of the elastic RMI to also becomes 1/Q

(E(t) = Q−1F (t)1Q1′
Q = Q−11N1′

Q).

Using the elastic RMI weighted by the smoothing matrix, we can reconstruct the expected

log-likelihood obtained in the t-th E-step (Equation 15) as follows:

ln p(V |U) =

N∑
i=1

Q∑
q=1

n∑
j=1

e
(t)
iq zij

{
uij ln vjq + (1 − uij) ln(1 − vjq)

}
+ ln p(V ) + const. (22)

Then, in the M-steps, the expected log-likelihood is optimized with respect to the structural

parameters. When the prior probability of each RRE is a constant, the first derivative of

the expected log-likelihood with respect to the structural parameters is given by

∂ ln p(V |U )

∂vjq
=

N∑
i=1

e
(t)
iq zij

{uij

vjq
− 1 − uij

1 − vjq

}
. (23)

Equation (22) can be maximized with respect to each RRE. Therefore, the estimate of vjq

in the t-th M-step can be obtained by solving the above equation set to 0. That is, the RRE

estimate at the t-th EM cycle is obtained as

v
(t)
jq =

∑N
i=1 zijuije

(t)
iq∑N

i=1 zije
(t)
iq

=

∑N
i=1 zijuijg

′
qf

(t)
i∑N

i=1 zijg′
qf

(t)
i

. (24)
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2.4 Effective Degrees of Freedom and Minimum Information Es-
timation of Smoothing Matrix

The IRP shapes are greatly influenced by changing G. Therefore, the idea that the

optimal G is estimated from the data is worth considering. To begin with, it is necessary to

evaluate the size of the effect of G controlling the elasticity of the model by referring to an

information criterion.

We must start by considering the degrees of freedom of the model. The degrees of freedom

of a statistical model are generally given by

df = p1 − p2, (25)

where p1 and p2 are the numbers of parameters of the saturated and present models, respec-

tively. The saturated model is the model that fits the data much better than the present

model does and is used as the basis for comparison. When the saturated model for the batch-

type NTT model is defined as the model in which the number of latent ranks is the number

of response patterns, such a model can completely fit the data. However, such a model is a

lofty ideal for the comparison basis of the present model. Therefore, the benchmark model

(Shojima, 2008b) is used as the saturated model. This is a batch-type NTT model where the

number of latent ranks is n (the number of items) and satisfies the strongly ordinal alignment

condition. In addition, the smoothing matrix of the benchmark model is the identity matrix

with size n. This means that the benchmark model is not smoothed. When the batch-type

model is not smoothed, the RREs of the IRP are estimated independently. Accordingly, the

number of parameters for each item of the benchmark model can be considered as p1 = n.

Next, as for the number of parameters of the present model p2, it was defined as the

number of latent ranks Q per item in the NTT model with the SOM mechanism (Shojima,

2008b), which was equal to the number of elements (or the number of structural parameters)

in the IRP of each item. Accordingly, the number of parameters for the whole model is

n × Q. However, the IRP elements are not estimated independently; instead, the size of

the IRP estimates affect each other. Therefore, strictly speaking, the number of parameters

should be smaller or equal to Q, although it is almost impossible to quantify the degree of

interdependency among the elements in each IRP in the complicated estimation process of

the NTT model with the SOM mechanism.

In the batch-type NTT model proposed in this study, however, the degree of interde-

pendency is expressed in the smoothing matrix G. Hastie, Tibshirani, & Friedman (2001)

proposed the effective degrees of freedom (EDF), which was defined as the trace of the
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smoothing matrix. Here, the trace of the smoothing matrix G can be considered to be the

number of parameters of the present model of the batch-type NTT model, and it is given by

p2 = tr G. (26)

Let us consider the validity of regarding the trace of the smoothing matrix as the number

of parameters of the present model by looking at two extreme examples. When the smoothing

matrix is an identity matrix (G = IQ), the IRP elements are estimated independently. In

this case, the number of parameters is logically considered to be the number of latent ranks

Q, and the trace of the smoothing matrix is then congruent with Q (p2 = tr IQ = Q).

In addition, when all the elements in the smoothing matrix are 1/Q (G = 11′/Q), all the

elements in the IRP of each item become equal to the item’s correct answer ratio. In this

case, the number of parameters can be considered to be 1, and the trace of the smoothing

matrix also becomes 1 (p2 = tr (11′/Q) = 1). As can be seen above, a certain type of validity

is satisfied by considering the trace of the smoothing matrix as the number of parameters of

the present model. Therefore, the EDF of item j of the batch-type NTT model is given by

edfj = n − tr G. (27)

The χ2 statistic of the batch-type NTT model can then be computed as

Cj = 2{ln p(v̂Bj|uj) − ln p(v
(t)
j |uj)}, (28)

where v̂Bj (n×1) is the IRP estimate of the benchmark model for item j. In addition, some

information criteria for each item can be evaluated from the above statistic. For example,

the Akaike information criterion (AIC; Akaike, 1987), consistent AIC (CAIC; Bozdogan,

1987), and Bayes information criterion (BIC; Schwarz, 1978) are calculated as follows:

AICj = Cj − 2edfj, (29)

CAICj = Cj − edfj(ln N + 1), (30)

BICj = Cj − edfj(ln N). (31)

In addition, the information criteria for the whole model are evaluated by using C =
∑

j Cj

and edf =
∑

j edfj = n(n − tr G).

The minimum information estimation (Akaike, 1974) is a method of estimating the model

parameters by minimizing an information criterion. In the case of the batch-type NTT model,

it is possible to explore an optimal smoothing matrix by setting an information criterion as

the objective function. Let the following step be inserted after Line (5):

— Obtain G(t) by using F (t) and V (t−1). (32)
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Given the RRM estimate at the t − 1-th period (V (t−1)) and the RMI estimate at the t-th

period (F (t)), the information criterion can be written as

IC(G|V (t−1), F (t)) = − 2
N∑

i=1

Q∑
q=1

n∑
j=1

g′
qf

(t)
i zij

{
uij ln v

(t−1)
jq + (1 − uij) ln(1 − v

(t−1)
jq )

}

+ kn tr G + const. (33)

The terms related to the log-likelihood and the number of parameters of the benchmark

model become disjoint during the optimization of the above equation with respect to G.

The above equation becomes the AIC when the constant k is equal to 2. In addition, the

function also becomes the CAIC and BIC when k = ln N + 1 and k = ln N , respectively.

The AIC tends to select more conservative models than the CAIC and BIC do. In other

words, the AIC tends to be more supportive of a model with a bigger tr G. Accordingly, the

model selected by the AIC is more likely to be a less smooth model than hte one selected by

the CAIC or BIC.

The optimization of Equation (33) is identical to minimization of the function with linear

constraints. For example, the substantial number of parameters in the smoothing matrix is

only one (φ) from Equation (19) when the number of elements in the linear filter is three,

and this optimization must be executed under the linear constraints 0 ≤ (1− φ)/2 ≤ φ ≤ 1.

In addition, from Equation (20), the number of parameters in the smoothing matrix becomes

two when the number of elements in the linear filter is five, and the linear constraints in this

case are 0 ≤ (1 − φ1 − 2φ2)/2 ≤ φ2 ≤ φ1 ≤ 1.

The smoothing matrix that minimizes Equation (33) under the linear constraints is the

estimate of the smoothing matrix at the t-th period, G(t). Consequently, the RRM estimate

at the t-th period is then obtained by

v
(t)
jq =

∑N
i=1 zijuije

(t)
iq∑N

i=1 zije
(t)
iq

=

∑N
i=1 zijuijg

(t)
q

′f (t)
i∑N

i=1 zijg
(t)
q

′f (t)
i

. (34)

2.5 Stopping Rule and Strongly Ordinal Alignment Condition

The IRPs of the batch-type NTT model are estimated by executing Sections 2.2–2.4

repeatedly. Still, the result does not always satisfy the weakly ordinal alignment condition,

although the possibility that the weak condition is satisfied is greatly increased by smoothing

the IRPs. The NTT scale possesses no evidence that the scale is ordinal unless at least the

weak condition is satisfied. Accordingly, one must judge whether the TRP is monotonic. If

it is nonmonotonic, the data must be reanalyzed with a different smoothing matrix. The

10



TRP tends to strengthen the monotonicity when the central element in the linear filter is

set smaller.

Every IRP does not always increase monotonically even if the weak condition is satisfied,

and some test administrators or analysts might think that it is necessary for the IRPs of all

the items to be monotonic in practical test administration because they might think that the

correct answer ratios of all the items must be logically monotonic even if the correct ratios

of somje items are not actually monotonic. When the IRPs of all the items are monotonic,

the TRP is consequently monotonic. In this case, the strongly ordinal alignment condition

is satisfied. To impose the monotonic increase constraint (MIC; Shojima, 2008a, 2008b) on

the IRPs of all the items, it is necessary to insert a step after Line (7). For example, the

step is given by

For (j=1; j ≤ n; j = j + 1) (35)

— Sort v
(t)
j . (36)

The above step is very simple but effective to make the IRPs at the t-th period monotonic.

It is primarily necessary to estimate the latent rank and rank membership profile of

each examinee after obtaining the IRPs. The maximum likelihood method or the Bayesian

method shown in Shojima (2008b) is useful for estimating them.

3 Analysis

This section shows some examples of analyzing a geography test by the proposed method.

The number of items in the test was 35 and the sample size was 5000. This test was an

achievement test, so all missing data was treated as being incorrect. The number-right score

distribution is shown in Figure 1 and the simple statistics of this test are listed in Table 1.

From the figure and the skewness and kurtosis in the table, the number-right scores can be

regarded as being almost normally distributed. In addition, the alpha coefficient (Cronbach,

1951) was about 0.7, which is not very low as the reliability for binary test data.

3.1 Example 1: Result with Q = 10 and Fixed Smoothing Matrix

Here, the result analyzed with 10 latent ranks is shown. The smoothing matrix was fixed,

and the number of elements in the linear filter was three. That is, the linear filter used in this

example was φ3 = {0.2, 0.6, 0.2} from Equation (21). In addition, the Bayesian estimation

method was used, and the prior distribution of latent rank was a trapezoidal distribution

11



Figure 1: Number-Right Score Distribution

Table 1: Marginal Statistics of Number-Right Scores

Statistic Value
N 5000
n 35
Median 17
Max 35
Min 2
Range 33
Mean 16.911
SD 4.976
Skew. 0.313
Kurt. −0.074
Alpha 0.704

for which the prior probabilities at both ends of the latent rank scale were 0.095 (Shojima,

2008b). Table 2 shows the RRM estimated by the procedure described in Section 2. The

number of EM cycles required for convergence was eight.

Figure 2 shows the IRPs of 35 items, and each IRP plots the corresponding row vector of

the RRM in Table 2. The IRPs generally increase as the latent rank becomes higher. This

reflects the correct answer ratio of higher latent rankers for each item generally being higher,

although the IRPs of items 5, 7, 11, and 12 do not monotonically increase. In addition, the

IRPs are basically smooth, which reflects the effect of using the smoothing matrix. Each

IRP represents the characteristics of the corresponding item. For instance, it is clear that

items 2, 7, and 20 were very difficult because the correct answer ratios of the items by the

examinees belonging to even higher latent ranks were low. On the other hand, items 3 and

12



Table 2: Reference Matrix Estimate (Q = 10, Fixed Smoothing Matrix)

Item R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

1 0.248 0.260 0.277 0.297 0.317 0.335 0.353 0.385 0.464 0.558
2 0.256 0.259 0.264 0.269 0.276 0.286 0.295 0.301 0.310 0.324
3 0.568 0.621 0.689 0.739 0.773 0.800 0.820 0.840 0.872 0.907
4 0.213 0.213 0.218 0.234 0.263 0.306 0.359 0.432 0.544 0.647
5 0.221 0.221 0.226 0.235 0.243 0.247 0.255 0.292 0.396 0.517
6 0.733 0.771 0.824 0.867 0.892 0.905 0.910 0.915 0.924 0.937
7 0.333 0.333 0.331 0.334 0.347 0.367 0.384 0.397 0.426 0.471
8 0.227 0.236 0.247 0.261 0.285 0.326 0.389 0.483 0.613 0.719
9 0.436 0.485 0.555 0.613 0.657 0.695 0.731 0.764 0.801 0.835

10 0.260 0.261 0.261 0.266 0.289 0.335 0.407 0.510 0.656 0.781
11 0.530 0.563 0.602 0.621 0.620 0.613 0.615 0.646 0.717 0.782
12 0.381 0.407 0.442 0.471 0.504 0.554 0.624 0.709 0.806 0.878
13 0.225 0.242 0.263 0.277 0.288 0.311 0.359 0.440 0.557 0.650
14 0.172 0.193 0.227 0.263 0.297 0.332 0.371 0.422 0.494 0.557
15 0.378 0.422 0.483 0.527 0.547 0.554 0.570 0.615 0.697 0.764
16 0.235 0.254 0.279 0.298 0.313 0.330 0.358 0.410 0.504 0.597
17 0.179 0.210 0.262 0.316 0.357 0.381 0.391 0.403 0.446 0.504
18 0.553 0.582 0.626 0.674 0.726 0.783 0.841 0.895 0.939 0.965
19 0.311 0.336 0.376 0.418 0.463 0.514 0.575 0.658 0.769 0.855
20 0.198 0.204 0.212 0.220 0.232 0.251 0.280 0.323 0.384 0.432
21 0.299 0.334 0.391 0.443 0.481 0.510 0.539 0.573 0.613 0.644
22 0.343 0.371 0.416 0.463 0.507 0.547 0.582 0.620 0.679 0.736
23 0.318 0.333 0.361 0.402 0.455 0.513 0.564 0.603 0.643 0.684
24 0.214 0.272 0.362 0.452 0.527 0.585 0.621 0.646 0.696 0.760
25 0.364 0.422 0.512 0.597 0.663 0.712 0.746 0.770 0.791 0.810
26 0.177 0.195 0.226 0.267 0.323 0.390 0.458 0.526 0.614 0.701
27 0.403 0.459 0.545 0.628 0.693 0.739 0.766 0.786 0.817 0.852
28 0.222 0.256 0.314 0.376 0.432 0.480 0.526 0.594 0.710 0.814
29 0.372 0.393 0.421 0.447 0.478 0.522 0.581 0.658 0.762 0.849
30 0.528 0.598 0.695 0.772 0.819 0.846 0.867 0.890 0.916 0.934
31 0.311 0.342 0.384 0.415 0.432 0.443 0.466 0.519 0.621 0.719
32 0.180 0.180 0.185 0.198 0.219 0.242 0.260 0.283 0.337 0.403
33 0.173 0.190 0.217 0.246 0.268 0.282 0.293 0.321 0.391 0.466
34 0.387 0.407 0.434 0.457 0.479 0.503 0.527 0.549 0.580 0.614
35 0.458 0.502 0.559 0.597 0.619 0.638 0.665 0.706 0.766 0.824
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Figure 2: Item Reference Profiles (Q = 10, Fixed Smoothing Matrix)
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6 were found to be easy because the correct ratios of these items even for lower latent

rankers were high. In addition, items 8 and 10 were difficult for mid-level latent rankers

and easy for high latent rankers, so these items can be said to have high resolution for

discriminating higher latent rankers from mid-level latent rankers. Similarly, items 25 and 27

can discriminate lower rankers from mid-rankers. In addition, item 28 has high discriminancy

over the entire latent rank scale. Furthermore, some items had a plateau around the mid-level

latent ranks like items 11, 15, and 17.

Model-fit indices for each item can be calculated by the method shown in Shojima

(2008b). Table 3 lists the χ2 statistic, normed fit index (NFI; Bentler & Bonett, 1980),

relative fit index (RFI; Bollen, 1986), incremental fit index (IFI; Bollen, 1989), Tucker-Lewis

index (TLI; Bollen, 1989), comparative fit index (CFI; Bentler, 1990), root mean square

error of approximation (RMSEA; Browne & Cudeck, 1993), AIC, CAIC, and BIC. These

indices in the table are calculated from the expected log-likelihood, although they can also

be computed by using the log-likelihood. As for the indices based on the expected log-

likelihood, the IFI, TLI, and CFI are inclined to be 1.0 and the RMSEA tends to be 0.0.

This is because the χ2 statistic tends to be smaller than the EDF. The EDF of each item

was dfj = 35− (0.6× 8 + 0.6/(0.6 + 0.2)× 2) = 28.7. In addition, Table 4 lists the model-fit

indices for the whole test. The EDF was 1004.5 (= 28.7× 35). From these indices, we found

that the model-fit was generally satisfactory.

The rank membership profiles (RMPs; Shojima, 2008b) of examinees 1–15 out of the

5000 samples are shown in Figure 3. The RMP represents the probabilities of the examinees

belonging to the respective latent ranks. For example, the probability that examinee 1

belongs to latent rank R2 was 0.304 and this probability was the highest in his/her RMP, so

examinee 1 most likely belonged to latent rank R2, although the probabilities that he/she

belonged to R1 and R3 were also high: 0.281 and 0.227, respectively. In addition, the

latent rank estimates of examinees 7 and 10 were the same, R10, although the probability

of examinee 7 belonging to R10 was 0.777 and that of examinee 10 was 0.601. Therefore,

examinee 7 was more likely to have the ability of the R10 ranker than examinee 10 having

it. In fact, examinee 7 correctly answered 28 items out of the total of 35 items, while the

number-right score of examinee 10 was 24. Furthermore, the RMP of examinee 12 was

found to be bimodal. This examinee could respond correctly to relatively difficult items 1,

16, and 20, but responded incorrectly to comparatively easy items 3, 9, and 27. Therefore,

the RMP of the examinee was obtained as bimodal because eigther possibility—the ability

of the examinee being high or low—was undetermined. In this way, the RMP can give us

15



Table 3: Item Fit Indices (Q = 10, Fixed Smoothing Matrix)

Item χ2
28.7 NFI RFI IFI TLI CFI RMSEA AIC CAIC BIC

1 53.8 0.787 0.748 0.888 0.864 0.885 0.013 −3.6 −219.4 −190.7
2 3.2 0.791 0.752 1.000 1.000 1.000 0.000 −54.2 −269.9 −241.2
3 27.6 0.920 0.905 1.000 1.000 1.000 0.000 −29.8 −245.6 −216.9
4 28.3 0.944 0.934 1.000 1.000 1.000 0.000 −29.1 −244.8 −216.1
5 44.2 0.830 0.799 0.933 0.919 0.931 0.010 −13.2 −228.9 −200.2
6 21.1 0.900 0.881 1.000 1.000 1.000 0.000 −36.3 −252.0 −223.3
7 8.5 0.846 0.817 1.000 1.000 1.000 0.000 −48.9 −264.7 −236.0
8 43.6 0.931 0.919 0.976 0.971 0.975 0.010 −13.8 −229.6 −200.9
9 44.2 0.896 0.877 0.961 0.953 0.960 0.010 −13.2 −229.0 −200.3

10 67.1 0.912 0.896 0.948 0.938 0.947 0.016 9.7 −206.1 −177.4
11 28.1 0.807 0.772 1.000 1.000 1.000 0.000 −29.3 −245.1 −216.4
12 58.8 0.911 0.895 0.952 0.943 0.952 0.014 1.4 −214.3 −185.6
13 39.1 0.913 0.897 0.975 0.970 0.975 0.009 −18.3 −234.0 −205.3
14 32.5 0.915 0.899 0.989 0.987 0.989 0.005 −24.9 −240.6 −211.9
15 47.4 0.852 0.825 0.936 0.923 0.935 0.011 −10.0 −225.7 −197.0
16 27.4 0.908 0.891 1.000 1.000 1.000 0.000 −30.0 −245.8 −217.1
17 36.7 0.865 0.841 0.967 0.960 0.967 0.007 −20.7 −236.5 −207.8
18 35.6 0.945 0.935 0.989 0.987 0.989 0.007 −21.8 −237.5 −208.8
19 52.1 0.929 0.915 0.967 0.960 0.966 0.013 −5.3 −221.0 −192.3
20 39.2 0.791 0.753 0.934 0.919 0.932 0.009 −18.2 −234.0 −205.3
21 7.5 0.972 0.966 1.000 1.000 1.000 0.000 −49.9 −265.6 −236.9
22 21.7 0.938 0.927 1.000 1.000 1.000 0.000 −35.7 −251.5 −222.8
23 27.7 0.924 0.909 1.000 1.000 1.000 0.000 −29.7 −245.4 −216.7
24 113.8 0.855 0.828 0.887 0.866 0.887 0.024 56.4 −159.4 −130.7
25 60.1 0.897 0.878 0.943 0.932 0.943 0.015 2.7 −213.0 −184.3
26 68.9 0.907 0.889 0.943 0.932 0.943 0.017 11.5 −204.2 −175.5
27 41.2 0.926 0.913 0.976 0.972 0.976 0.009 −16.2 −232.0 −203.3
28 80.4 0.902 0.884 0.935 0.922 0.934 0.019 23.0 −192.8 −164.1
29 77.1 0.872 0.849 0.916 0.899 0.915 0.018 19.7 −196.1 −167.4
30 59.8 0.898 0.879 0.944 0.933 0.944 0.015 2.4 −213.3 −184.6
31 63.9 0.829 0.797 0.898 0.877 0.896 0.016 6.5 −209.3 −180.6
32 31.1 0.814 0.780 0.983 0.979 0.982 0.004 −26.3 −242.1 −213.4
33 18.8 0.910 0.893 1.000 1.000 1.000 0.000 −38.6 −254.4 −225.7
34 21.8 0.828 0.797 1.000 1.000 1.000 0.000 −35.6 −251.4 −222.7
35 49.8 0.844 0.816 0.928 0.913 0.926 0.012 −7.6 −223.3 −194.6

detailed information about each examinee such as an examinee could go up to the next rank

if he/she studied a little harder and another examinee might go down a notch unless he/she

strived to improve. That is, the RMP can be used as educational diagnostic information
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Table 4: Test Fit Indices (Q = 10, Fixed Smoothing Matrix)

Index Value
χ2

1004.5 1841.95
NFI 0.897
RFI 0.878
IFI 0.964
TLI 0.957
CFI 0.964
RMSEA 0.010
AIC −527.05
CAIC −8078.07
BIC −7073.57

Figure 3: Rank Membership Profiles of Examinees 1–15 (Q = 10, Fixed Smoothing Matrix)

about each examinee’s ability level.

Some additional information obtained by the NTT analysis is shown in Figure 4. Figure

4(a) is the test reference profile (TRP; Shojima, 2008a, 2008b), which is the weighted sum of

the IRPs and represents the expected test scores of the examinees belonging to the respective

latent ranks. For example, the expected score of the examinees belonging to R6 was found

to be around 17 for this geography test. In the analysis of Example 1, the weakly ordinal
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(a) Test Reference Profile (TRP) (b) TRP on Score Distribution

(c) Latent Rank Distribution (LRD) (d) Rank Membership Distribution (RMD)

(e) Rank-Score Scatter Plot (f) Rank-Quantile Scatter Plot

(g) Membership-Score Scatter Plot (h) Membership-Quantile Scatter Plot

Figure 4: TRP, LRD, RMD, and Scatter Plots (Q = 10, Fixed Smoothing Matrix)
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alignment condition was satisfied because the TRP monotonically increased, although not

every IRP was monotonic. Therefore, the latent scale obtaied by the analysis was verified to

be ordinal in terms of the TRP. If the TRP is not monotonic, the problem can be solved by

imposing the MIC on some IRPs or using a smoothing matrix with larger diagonal elements.

In addition, Figure 4(b) shows the TRP ticked on the number-right score distribution.

Figure 4(c) is the latent rank distribution (LRD; Shojima, 2008a, 2008b), which repre-

sents the frequencies of the latent rank estimates of the examinees. Furthermore, Figure

4(d) is the rank membership distribution (RMD; Shojima, 2008b), which is the simple sum

of the RMPs of all the examinees. The LRD expresses the distribution of the latent rank

estimates of the sample, while the RMD expresses that of the population.

Figure 4(e) is a scatter plot of the latent rank estimates and the number right scores of the

examinees, where the darker area represents a higher frequency. In addition, we found from

the scatter plot that the latent ranks of the examinees with the same number-right scores

were not always identical. However, the Spearman’s rank correlation coefficient between the

ranks and the scores was 0.952, so the abilities measured by the latent rank scale and the

number-right score scale were not totally different. The largeness of the coefficient shows a

certain kind of validity for the latent rank scale. In addition, Figure 4(f) shows the scatter

plot of the latent rank estimates and the decile scores (10 percentile scores), and the rank

correlation coefficient between them was 0.948. Furthermore, Figures 4(g) and 4(h) are the

RMDs stratified by the number-right scores and the decile scores, respectively, and they

represent the characteristics of the scatter plot about the population, while Figures 4(e) and

4(f) show those of the sample.

3.2 Example 2: Result with Q = 10 and Free Smoothing Matrix

As explained in Section 2.4, the IRPs in this example were estimated with estimating

the optimal smoothing matrix. The objective function was selected to be the BIC, so the

constant used in Equation (33) was k = ln N . The number of elements in the linear filter

was three, and the linear filter estimate was then obtained to be φ̂3 = {0.039, 0.921, 0.039}.
The number of EM cycles until convergence was eight.

Here, we selectively focus on some important results compared with Example 1. First,

the IRP estimates of the 35 items are shown in Figure 5. It is evident from the linear filter

estimate that these IRPs are not smoother than those in Figure 2. Each RRE estimate in

the IRP kept higher independency because the EDF was smaller. That is, no adjacent RREs

of the IRP in Example 2 were closer than those in Example 1.
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Figure 5: Item Reference Profile (Q = 10, Free Smoothing Matrix)
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The model-fit indices for the whole test are listed in Table 5. The EDF of the model was

899.86 (= 25.71×35), where 25.71 (= 35− (0.921×8+0.921/(0.921+0.039)×2) is the EDF

of each item. From these indices, the model-fit of Example 2 with the estimated smoothing

matrix is clearly better than that of Example 1 with the fixed smoothing matrix, although

it is likely that the model of Example 2 overfits the data, as seen from its IRPs. In addition,

the linear filter estimate was obtained to be {1/3, 1/3, 1/3} when the CAIC was used as the

objective function. Accordingly, one important future task is to make an adequate constant

k for Equation (33) defined within the range lnN < k < ln N + 1.

Table 5: Test Fit Indices (Q = 10, Free Smoothing Matrix)

Index Value
χ2

899.86 559.88
NFI 0.961
RFI 0.949
IFI 1.000
TLI 1.000
CFI 1.000
RMSEA 0.000
AIC −1239.84
CAIC −8004.26
BIC −7104.40

3.3 Example 3: Result with Q = 5 and Fixed Smoothing Matrix

The result with Q = 5 is shown in this subsection. The number of latent ranks is up to

test administrator or teacher. If the test administrator wants to grade the examinees or the

students into Excellent, Very Good, Good, Below Average, and Needs Improvement, he/she

should analyze the data under the model with Q = 5.

The applied linear filter was {0.1, 0.8, 0.1} from Equation (21). The number of EM cycles

required for convergence was seven. The estimated IRPs are shown in Figure 6. The IRPs

are inclined to monotonically increase as the number of latent ranks is smaller, although the

shape of each IRP is basically similar to the IRPs of the model with Q = 10 in Example 1

(Figure 2). In addition, the TRP, LRD, RMD, and the scatter plots are shown in Figure

7. The LRD (Figure 7(d)) was almost flat, so the equiprobability scale can be said to be

generated. In addition, Figure 7(f) is the scatter plot of the latent rank estimates and the

20 percentile scores.
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Figure 6: Item Reference Profiles (Q = 5, Fixed Smoothing Matrix)
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(a) Test Reference Profile (TRP) (b) TRP on Score Distribution

(c) Latent Rank Distribution (LRD) (d) Rank Membership Distribution (RMD)

(e) Rank-Score Scatter Plot (f) Rank-Quantile Scatter Plot

(g) Membership-Score Scatter Plot (h) Membership-Quantile Scatter Plot

Figure 7: TRP, LRD, RMD, and Scatter Plots (Q = 10, Fixed Smoothing Matrix)
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The model-fit indices of the whole test are given in Table 6. They are generally satisfac-

tory. These indices serve as a useful reference in determining the number of latent ranks.

Comparing the indices of Example 1 with those of Example 3, it is clear from all the listed

indices that the model of Example 1 fits the data better than that of Example 3. Accord-

ingly, the model with Q = 10 is better than the model with Q = 5. However, the number of

latent ranks should be determined not only by the statistical indices, but also by the usage

of the test. For example, test data should be analyzed by the model with Q = 3 even if many

model-fit indices of the model with Q = 3 are unsatisfactory, when the test is a placement

test for the purpose of roughly grading enrollees into three classes.

Table 6: Test Fit Indices (Q = 5, Fixed Smoothing Matrix)

Index Value
χ2

1078.78 1978.76
NFI 0.863
RFI 0.848
IFI 0.932
TLI 0.925
CFI 0.932
RMSEA 0.013
AIC −178.80
CAIC −8288.18
BIC −7209.40

3.4 Example 4: Result with Q = 5 and Free Smoothing Matrix

The last example is the result analyzed by the model with Q = 5 where the elements in

the linear filter were treated as free parameters. The number of elements in the linear filter

was three and the BIC was used as the objective function. The linear filter estimate was

{0.016, 0.968, 0.016}. The number of EM cycles until convergence was nine.

As shown in Figure 8, the IRPs of the 35 items were hardly smooth. This is because

the central element in the linear filter estimate was almost 1.0. In this case, the smoothing

matrix became almost equal to an identity matrix, which leads that the elastic RMI becomes

almost identical to the RMI (E � F ). Accordingly, the RREs of each IRP were obtained

almost independently. The smoothness of the IRP is attained by each RRE referring to the

neighboring RREs. Therefore, the IRPs are not obtained to be smooth when the smoothing
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Figure 8: Item Reference Profile (Q = 5, Free Smoothing Matrix)
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matrix is almost an identity matrix because the adjacent RREs do not become close to one

another.

The goodness-of-fit indices of the model for the whole test are listed in Table 7. They

were basically satisfactory. However, the IRPs of this model were not very smooth, as seen

from Figure 8. Therefore, it might be better to select the models of Examples 1 and 3, that

is the models with a fixed linear filter, from a comprehensive standpoint. This comfirms the

statement made in Example 2 that a more appropriate constant k needs to be set.

Table 7: Test Fit Indices (Q = 5, Free Smoothing Matrix)

Index Value
χ2

1054.49 1109.88
NFI 0.923
RFI 0.913
IFI 0.996
TLI 0.995
CFI 0.996
RMSEA 0.003
AIC −999.10
CAIC −8925.87
BIC −7871.39

4 Discussion

A batch-type learning version of the NTT model was proposed in this study, where the

mechanism of the GTM was applied to the statistical learning process and the smoothing

method was also incorporated into the process. The nature of the NTT model with the SOM

mechanism (Shojima, 2008a, 2008b) is such that the estimation result is slightly different

in every calculation even if the parameter setting is identical. The batch-type NTT model

is useful for someone who dislikes this nature. In addition, an advantage of the batch-type

model is that the computation time required for identifying the model is much shorted than

that for the NTT model with the SOM mechanism.

Furthermore, another advantage of the batch-type NTT model is that the degrees of

freedom can be computed to evaluate the smoothness of the model. In the NTT model

with the SOM mechanism, the number of degrees of freedom per item was dfj = n −
Q. Although the number of degrees of freedom should be larger as the model becomes
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smoother, it was always n − Q in the NTT model with the SOM mechanism because it

was difficult to evaluate the degree of smoothness generated by the estimation process in

the SOM mechanism. Therefore, Shojima (2008b) simply defined the difference between the

number of parameters of the benchmark model and that of the present model as the degrees

of freedom of the present model. However, in the batch-type NTT model, the model-fit could

be evaluated taking into account the smoothness and flexibility of the model by defining the

trace of the smoothing matrix as the effective degrees of freedom.

Furthermore, two estimation methods were shown when the smoothing matrix was fixed

or free. A method for estimating the smoothing matrix by minimizing an information cri-

terion was proposed. In four examples, the solutions with the fixed smoothing matrix were

preferable to those with the free smoothing matrix. One of the future tasks must be how to

select the information criterion to be optimized.
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